Quantcast
4S Ranch Allied Gardens Alpine Baja Balboa Park Bankers Hill Barrio Logan Bay Ho Bay Park Black Mountain Ranch Blossom Valley Bonita Bonsall Borrego Springs Boulevard Campo Cardiff-by-the-Sea Carlsbad Carmel Mountain Carmel Valley Chollas View Chula Vista City College City Heights Clairemont College Area Coronado CSU San Marcos Cuyamaca College Del Cerro Del Mar Descanso Downtown San Diego Eastlake East Village El Cajon Emerald Hills Encanto Encinitas Escondido Fallbrook Fletcher Hills Golden Hill Grant Hill Grantville Grossmont College Guatay Harbor Island Hillcrest Imperial Beach Imperial Valley Jacumba Jamacha-Lomita Jamul Julian Kearny Mesa Kensington La Jolla Lakeside La Mesa Lemon Grove Leucadia Liberty Station Lincoln Acres Lincoln Park Linda Vista Little Italy Logan Heights Mesa College Midway District MiraCosta College Miramar Miramar College Mira Mesa Mission Beach Mission Hills Mission Valley Mountain View Mount Hope Mount Laguna National City Nestor Normal Heights North Park Oak Park Ocean Beach Oceanside Old Town Otay Mesa Pacific Beach Pala Palomar College Palomar Mountain Paradise Hills Pauma Valley Pine Valley Point Loma Point Loma Nazarene Potrero Poway Rainbow Ramona Rancho Bernardo Rancho Penasquitos Rancho San Diego Rancho Santa Fe Rolando San Carlos San Marcos San Onofre Santa Ysabel Santee San Ysidro Scripps Ranch SDSU Serra Mesa Shelltown Shelter Island Sherman Heights Skyline Solana Beach Sorrento Valley Southcrest South Park Southwestern College Spring Valley Stockton Talmadge Temecula Tierrasanta Tijuana UCSD University City University Heights USD Valencia Park Valley Center Vista Warner Springs

The In-flight Answer

Dear Matthew:

On my way to work the other day, I was watching what I think were seagulls flying in a V formation. I've seen ducks and geese do this, but it suddenly occurred to me that I've never seen other birds like sparrows or pigeons fly that way, even though they hang around in flocks like geese and ducks. Is there a reason for this? Can you find out what it is?

BG, Vista

The geese stonewalled us, but ornithologists and aerodynamicists have studied formation flying, of course, and they're only too happy to go on at length for the benefit of us lesser mortals. As usual, the answer you get depends on who you ask, truth being a slippery commodity when it comes to the whys behind animal behavior. I'll go with the generally accepted notions.

On page one of the flight instruction manual it says, the more you weigh, the harder you have to flap. The average hanging-around bird weighing only a few ounces needs to maintain an air speed of 11 to 15 miles per hour to keep itself airborne. If an ostrich could fly, sez one scientist, it would have to zoom along at 100 miles per hour to keep all 250 pounds off the ground. By extension, the most aerodynamically well-designed scientist would probably have to maintain 65 or 70. At any rate, flight is the most demanding physical stunt a bird can do. Any edge it can get it will take. Formation flying is one such advantage.

In an effort to find out what that advantage is, the lab coats devised a clever little calculation called Munk's Stagger Theorem. This allows a scientist sitting on his butt in front of a computer to tell geese how to get the most out of flight. The fact that geese don't fly in strict compliance with theory just means they still know something we don�t. As it should be, I think.

Like planes, birds create turbulence behind them as they fly. Air coming off the top of a bird's wing produces down-turning eddies of air. Any companions flying too close on a goose's heels would have to work even harder to stay at the proper altitude and keep up with the flock. But the tip of each bird's wing creates vortexes that turn in the opposite direction, creating an updraft. A bird flying above and just off the end of its neighbor's wingtip benefits from the buoyancy. Taking advantage of this, a flock of two dozen geese can increase its range by as much as 71 percent.

Another advantage of V-formation flight is its self-correcting quality. Any bird that surges too far ahead of its position is slowed down by the lack of lift and naturally falls back into place.

Why geese and not sparrows? Most common sparrows don't fly any farther than the next outdoor restaurant, so they don't have much reason to worry about long-distance aerodynamics. And as handy as the wingtip vortexes are, they disintegrate fairly quickly. The larger the wing, the longer the effect lasts. For sparrows to take full advantage of the updrafts, they would have to fly too close together, turning the well-ordered flock into a 30-car pileup

Here's something you might be interested in.
Submit a free classified
or view all

Previous article

Loco Lopez takes brunch over the top

Cheese-wrapped burrito and donut grilled cheese at OB pop-up
Next Article

Bay Books Cafe: cook the books

It’s an artistic mix of egg, pepper, red onion, queso fresco, radish slices, and avo.

Dear Matthew:

On my way to work the other day, I was watching what I think were seagulls flying in a V formation. I've seen ducks and geese do this, but it suddenly occurred to me that I've never seen other birds like sparrows or pigeons fly that way, even though they hang around in flocks like geese and ducks. Is there a reason for this? Can you find out what it is?

BG, Vista

The geese stonewalled us, but ornithologists and aerodynamicists have studied formation flying, of course, and they're only too happy to go on at length for the benefit of us lesser mortals. As usual, the answer you get depends on who you ask, truth being a slippery commodity when it comes to the whys behind animal behavior. I'll go with the generally accepted notions.

On page one of the flight instruction manual it says, the more you weigh, the harder you have to flap. The average hanging-around bird weighing only a few ounces needs to maintain an air speed of 11 to 15 miles per hour to keep itself airborne. If an ostrich could fly, sez one scientist, it would have to zoom along at 100 miles per hour to keep all 250 pounds off the ground. By extension, the most aerodynamically well-designed scientist would probably have to maintain 65 or 70. At any rate, flight is the most demanding physical stunt a bird can do. Any edge it can get it will take. Formation flying is one such advantage.

In an effort to find out what that advantage is, the lab coats devised a clever little calculation called Munk's Stagger Theorem. This allows a scientist sitting on his butt in front of a computer to tell geese how to get the most out of flight. The fact that geese don't fly in strict compliance with theory just means they still know something we don�t. As it should be, I think.

Like planes, birds create turbulence behind them as they fly. Air coming off the top of a bird's wing produces down-turning eddies of air. Any companions flying too close on a goose's heels would have to work even harder to stay at the proper altitude and keep up with the flock. But the tip of each bird's wing creates vortexes that turn in the opposite direction, creating an updraft. A bird flying above and just off the end of its neighbor's wingtip benefits from the buoyancy. Taking advantage of this, a flock of two dozen geese can increase its range by as much as 71 percent.

Another advantage of V-formation flight is its self-correcting quality. Any bird that surges too far ahead of its position is slowed down by the lack of lift and naturally falls back into place.

Why geese and not sparrows? Most common sparrows don't fly any farther than the next outdoor restaurant, so they don't have much reason to worry about long-distance aerodynamics. And as handy as the wingtip vortexes are, they disintegrate fairly quickly. The larger the wing, the longer the effect lasts. For sparrows to take full advantage of the updrafts, they would have to fly too close together, turning the well-ordered flock into a 30-car pileup

Sponsored
Here's something you might be interested in.
Submit a free classified
or view all
Previous article

Kanye West for president

Will San Diego voters be lining up at the polls?
Next Article

Death, destruction and rebuilding in La Mesa

“I don’t feel the pull of pure chaos myself, because I’ve worked to build a life.”
Comments
0

Be the first to leave a comment.

Sign in to comment

Sign in

Art Reviews — W.S. Di Piero's eye on exhibits Ask a Hipster — Advice you didn't know you needed Best Buys — San Diego shopping Big Screen — Movie commentary Blurt — Music's inside track Booze News — San Diego spirits City Lights — News and politics Classical Music — Immortal beauty Classifieds — Free and easy Cover Stories — Front-page features Excerpts — Literary and spiritual excerpts Famous Former Neighbors — Next-door celebs Feast! — Food & drink reviews Feature Stories — Local news & stories From the Archives — Spotlight on the past Golden Dreams — Talk of the town Here's the Deal — Chad Deal's watering holes Just Announced — The scoop on shows Letters — Our inbox [email protected] — Local movie buffs share favorites Movie Reviews — Our critics' picks and pans Musician Interviews — Up close with local artists Neighborhood News from Stringers — Hyperlocal news News Ticker — News & politics Obermeyer — San Diego politics illustrated Of Note — Concert picks Out & About — What's Happening Overheard in San Diego — Eavesdropping illustrated Poetry — The old and the new Pour Over — Grab a cup Reader Travel — Travel section built by travelers Reading — The hunt for intellectuals Roam-O-Rama — SoCal's best hiking/biking trails San Diego Beer News — Inside San Diego suds SD on the QT — Almost factual news Set 'em Up Joe — Bartenders' drink recipes Sheep and Goats — Places of worship Special Issues — The best of Sports — Athletics without gush Street Style — San Diego streets have style Suit Up — Fashion tips for dudes Theater Reviews — Local productions Theater antireviews — Narrow your search Tin Fork — Silver spoon alternative Under the Radar — Matt Potter's undercover work Unforgettable — Long-ago San Diego Unreal Estate — San Diego's priciest pads Waterfront — All things ocean Your Week — Daily event picks
4S Ranch Allied Gardens Alpine Baja Balboa Park Bankers Hill Barrio Logan Bay Ho Bay Park Black Mountain Ranch Blossom Valley Bonita Bonsall Borrego Springs Boulevard Campo Cardiff-by-the-Sea Carlsbad Carmel Mountain Carmel Valley Chollas View Chula Vista City College City Heights Clairemont College Area Coronado CSU San Marcos Cuyamaca College Del Cerro Del Mar Descanso Downtown San Diego Eastlake East Village El Cajon Emerald Hills Encanto Encinitas Escondido Fallbrook Fletcher Hills Golden Hill Grant Hill Grantville Grossmont College Guatay Harbor Island Hillcrest Imperial Beach Imperial Valley Jacumba Jamacha-Lomita Jamul Julian Kearny Mesa Kensington La Jolla Lakeside La Mesa Lemon Grove Leucadia Liberty Station Lincoln Acres Lincoln Park Linda Vista Little Italy Logan Heights Mesa College Midway District MiraCosta College Miramar Miramar College Mira Mesa Mission Beach Mission Hills Mission Valley Mountain View Mount Hope Mount Laguna National City Nestor Normal Heights North Park Oak Park Ocean Beach Oceanside Old Town Otay Mesa Pacific Beach Pala Palomar College Palomar Mountain Paradise Hills Pauma Valley Pine Valley Point Loma Point Loma Nazarene Potrero Poway Rainbow Ramona Rancho Bernardo Rancho Penasquitos Rancho San Diego Rancho Santa Fe Rolando San Carlos San Marcos San Onofre Santa Ysabel Santee San Ysidro Scripps Ranch SDSU Serra Mesa Shelltown Shelter Island Sherman Heights Skyline Solana Beach Sorrento Valley Southcrest South Park Southwestern College Spring Valley Stockton Talmadge Temecula Tierrasanta Tijuana UCSD University City University Heights USD Valencia Park Valley Center Vista Warner Springs
Close